からっぽのしょこ

読んだら書く!書いたら読む!同じ事は二度調べ(たく)ない

攻略ノート

本で勉強した内容をまとめた記事です。

【R】7.2:イジング模型【ゼロからMCMCのノート】

はじめに 『ゼロからできるMCMC』の図とサンプルコードをR言語で再現します。本と一緒に読んでください。 この記事は、7.2節の内容です。2次元の正方格子のイジングモデルをメトロポリス法・ギブスサンプリング・Wolffのアルゴリズムを用いてシミュレーショ…

【Python】3.2.3:ポアソン分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.3項の内容です。尤度関数…

【R】3.2.3:ポアソン分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.3項の内容です。尤度関数…

【Python】3.2.2:カテゴリ分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.2項の内容です。尤度関数…

【R】3.2.2:カテゴリ分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.2項の内容です。尤度関数…

【Python】3.2.1:ベルヌーイ分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.1項の内容です。尤度関数…

【R】3.2.1:ベルヌーイ分布の学習と予測【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.2.1項の内容です。尤度関数…

Rによる『ゼロからできるMCMC』の学習ノート:記事一覧

はじめに 『ゼロからできるMCMC』の図やサンプルコードをR言語で再現します。本と一緒に読んでください。 【目次】 はじめに 記事一覧 Chapter 2 そもそもモンテカルロとは Chapter 3 マルコフ連鎖モンテカルロ法の一般論 Chapter 4 メトロポリス法 Chapter …

【R】Chapter 5:多変数のメトロポリス法【ゼロからMCMCのノート】

はじめに 『ゼロからできるMCMC』の図とサンプルコードをR言語で再現します。本と一緒に読んでください。 この記事は、5章の内容です。多変数のガウス分布(多変量正規分布)に対してメトロポリス法を用いて期待値計算を近似します。 【前の章の内容】 www.ana…

【R】Chapter 4:メトロポリス法【ゼロからMCMCのノート】

はじめに 『ゼロからできるMCMC』の図とサンプルコードをR言語で再現します。本と一緒に読んでください。 この記事は、4章の内容です。マルコフ連鎖モンテカルロ法の1つであるメトロポリス法を行います。 【前の章の内容】 www.anarchive-beta.com 【他の章…

【R】3.1,3:ランダムウォーク【ゼロからMCMCのノート】

はじめに 『ゼロからできるMCMC』の図とサンプルコードをR言語で再現します。本と一緒に読んでください。 この記事は、3章「マルコフ連鎖モンテカルロ法の一般論 」の内容です。この章では、マルコフ連鎖モンテカルロ法の典型例としてランダムウォークについ…

【R】Chapter 2:そもそもモンテカルロ法とは【ゼロからMCMCのノート】

はじめに 『ゼロからできるMCMC』の図とサンプルコードをR言語で再現します。本と一緒に読んでください。 この記事は2章の内容です。マルコフ連鎖を使わない素朴なモンテカルロ法の例を確認します。 【他の章の内容】 www.anarchive-beta.com 【この章の内容…

A.2:tanh関数【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.5:RNNLMのさらなる改善【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.4:LSTMを使った言語モデル【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.3.1:Time LSTMの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.3.0:LSTMの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.2.7:LSTMの勾配の流れ【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.2.3-6:勾配消失とLSTM【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

6.1:RNNの問題点【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

2.4.0:指数型分布族【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、2.4節の始めの内容です。ベル…

『パターン認識と機械学習』の攻略ノート:記事一覧

はじめに 『パターン認識と機械学習』の独学時のまとめです。「数式の行間埋め」と「R・Pythonでの実装」からアルゴリズムの理解を目指します。アルゴリズムの説明自体は省略するので、本とあわせて読んでください。 この記事は、各節の解説記事へのリンクペ…

4.4.4:ガウス混合モデルの崩壊型ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「Rで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は4.4.4項の内容です。平均、精度行列が未…

5.5.3-4:RNNLMの学習コード【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.5.2:言語モデルの評価【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.5.1:RNNLMの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.4.2.3:Time Softmax with Lossレイヤの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.4.2.2:Time Affineレイヤの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.4.2.1:Time Embeddingレイヤの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…

5.3.2:Time RNNレイヤの実装【ゼロつく2のノート(実装)】

はじめに 『ゼロから作るDeep Learning 2――自然言語処理編』の初学者向け【実装】攻略ノートです。『ゼロつく2』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 本の内容を1つずつ確認しながらゆっくりと組んでいきます。 この…