からっぽのしょこ

読んだら書く!書いたら読む!同じ事は二度調べ(たく)ない

変分推論

【R】3.4:混合ユニグラムモデルの変分ベイズ推定の実装:ループなし版【『トピックモデル』の勉強ノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に自分の理解の助けになったことや勉強会資料のまとめです。トピックモデルの各種アルゴリズムを「数式」と「プログラム」から理解することを目指します。 この記事は、3.4節「変分…

【Python】10.1.3:一変数ガウス分布の変分推論の実装【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

【R】10.1.3:一変数ガウス分布の変分推論の実装【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

10.1.3:一変数ガウス分布の変分推論の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

【Python】4.3.3:ポアソン混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.3項の内容です。「観測モ…

【R】4.3.3:ポアソン混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.3項の内容です。「観測モ…

4.2.2:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.2.2項の内容です。混合モデ…

【Python】4.4.3:ガウス混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.4.3項の内容です。「観測モ…

【R】4.4.3:ガウス混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに この記事は、「R Advent Calendar 2020」の10日目の記事です。 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解…

4.4.3:ガウス混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.4.3項の内容です。「観測モ…

【R】3.4.3:LDAの確率的変分ベイズ法【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。本と併せて読んでください。 この記事では、3.4.3項のLDAの確率的変分ベイズ法について書いています。図3.6の疑似コードを基にR言語で実装していきます。 プログラムからアルゴリズ…

【R】3.3.8:LDAの周辺化変分ベイズ法【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。本と併せて読んでください。 この記事では、3.3.8項のLDAの周辺化変分ベイズ法について書いています。図3.5の疑似コードを基にR言語で実装していきます(未完)。 プログラムからアル…

【R】3.3.5:LDAの変分ベイズ法(1):その2【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。本と併せて読んでください。 この記事では、3.3.5項のLDAの変分ベイズ法について書いています。図3.4の疑似コード(b)を基にR言語で実装していきます。 プログラムからアルゴリズム…

【R】3.3.5:LDAの変分ベイズ法(1):その1【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。本と併せて読んでください。 この記事では、3.3.5項のLDAの変分ベイズ法について書いています。図3.4の疑似コード(a)を基にR言語で実装していきます。 プログラムからアルゴリズム…

4.3.3:ポアソン混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.3項の内容です。「観測モ…

3.6.6:周辺化ギブスサンプリング/変分ベイズ法の場合【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでください。 この記事では、3.6.6項の周辺化ギブスサンプリングと変分ベイズ法でハイパーパラメータの推…

3.6.3:固定点反復法【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでください。 この記事では、3.6.3項の固定点反復法によるLDAのハイパーパラメータ推定について書いてい…

3.4.3:LDAの確率的変分ベイズ法【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでください。 この記事では、3.4.3節のLDAの変分ベイズ法に自然勾配法を用いて確率的最適化する手法につ…

3.3.8:LDAの周辺化変分ベイズ法【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでください。 この記事では、3.3.8節の$\boldsymbol{\theta}_d, \boldsymbol{\phi}_k$を周辺化した周辺化…

3.3.7:LDAの変分ベイズ法(3)【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでいただければと思います。 この記事では、3.3.7節の単語分布に対してはMAP推定を行う場合について書い…

3.3.6:LDAの変分ベイズ法(2)【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでいただければと思います。 この記事では、3.3.6節の近似事後分布の形を仮定するLDAの変分ベイズ法につ…

3.3.4-5:LDAの変分ベイズ法(1)【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでいただければと思います。 この記事では、主に3.3.5節の近似事後分布の形を仮定しないLDAの変分ベイズ…

3.3.2:変分ベイズ法(1)【白トピックモデルのノート】

はじめに 『トピックモデルによる統計的潜在意味解析』の学習時のメモです。基本的な内容は、数式の行間を読んで埋めたものになります。本と併せて読んでいただければと思います。 この記事では、3.3.2節の変分ベイズ法について書いています。 数学よく解ら…

Chapter4.4:LDAをRで組んでみた【青トピックモデルのノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に理解の助けになったことや勉強会用レジュメのまとめです。 以前の記事「Chapter4.4:R言語でトピックモデルの変分ベイズ推定【『トピックモデル』の勉強ノート】 - からっぽのし…

Chapter4.4:R言語でトピックモデルの変分ベイズ推定【『トピックモデル』の勉強ノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に理解の助けになったことや勉強会用レジュメのまとめです。 この記事では、R言語でトピックモデルを変分ベイズ推定するLDA(潜在ディリクレ配分モデル)を行う方法について書いてい…

4.4:トピックモデルの変分ベイズ推定【『トピックモデル』の勉強ノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に自分の理解の助けになったことや勉強会資料のまとめです。トピックモデルの各種アルゴリズムを「数式」と「プログラム」から理解することを目指します。 この記事は、4.4節「変分…

【R】3.4:混合ユニグラムモデルの変分ベイズ推定の実装【『トピックモデル』の勉強ノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に自分の理解の助けになったことや勉強会資料のまとめです。トピックモデルの各種アルゴリズムを「数式」と「プログラム」から理解することを目指します。 この記事は、3.4節「変分…

3.4:混合ユニグラムモデルの変分ベイズ推定の導出【『トピックモデル』の勉強ノート】

はじめに 機械学習プロフェッショナルシリーズの『トピックモデル』の勉強時に自分の理解の助けになったことや勉強会資料のまとめです。トピックモデルの各種アルゴリズムを「数式」と「プログラム」から理解することを目指します。 この記事は、3.4節「変分…