からっぽのしょこ

読んだら書く!書いたら読む!同じ事は二度調べ(たく)ない

2021-01-01から1年間の記事一覧

2021年の積み本

はじめに 去年「2020年の積み本 - からっぽのしょこ」に引き続き、今年も勉強内容を振り返ります。 はじめに これまでに買った本 やった本 今年買った本 やった本 やってる本 やってない本 おわりに これまでに買った本 やった本 斎藤康毅『ゼロから作るDeep…

【R】4.5.1:ベイズロジスティック回帰の実装:MAP推定と近似事後分布【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.5.1項の内容です…

【Python】4.4.0:ラプラス近似の実装:2次元の場合【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.4節の内容です。2…

【Python】4.4.0:ラプラス近似の実装:1次元の場合【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.4節の内容です。1…

【Python】2.3.1-2:条件付きガウス分布と周辺ガウス分布の可視化【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、2.3.1項と2.3.2項の…

【Python】3.1.4.0:Lpノルムの作図【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

【R】3.1.4.a:リッジ回帰の正則化項と最尤解の可視化【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

2.3.2:周辺ガウス分布の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、2.3.2項の内容です…

2.3.1:条件付きガウス分布の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、2.3.1項の内容です…

4.5.1:ベイズロジスティック回帰の導出:MAP推定と近似事後分布【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.5.1項の内容です…

4.4.0:ラプラス近似の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.4節の内容です。…

【R】4.3.2-3:ロジスティック回帰の実装【PRMLのノート】

はじめに この記事は、「Rのカレンダー | Advent Calendar 2021 - Qiita」の13日目の記事です。 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助するこ…

【R】3.1.4.b:ラッソ回帰の実装【PRMLのノート】

はじめに この記事は、「Rのカレンダー | Advent Calendar 2021 - Qiita」の11日目の記事です。 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助するこ…

【R】3.1.4.b:ラッソ回帰の正則化項と最尤解の可視化【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

4.3.2-3:ロジスティック回帰の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.3.2項と4.3.3項の…

Sigmoid関数の微分【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.3.2項を補足する…

4.2.0:事後確率とロジスティックシグモイド関数・ソフトマックス関数の関係【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、4.2節の内容です。…

3.1.4.b:ラッソ回帰の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最小二乗法」…

3.1.4.a:リッジ回帰の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

【R】3.1.4.a:リッジ回帰の実装【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

【R】3.1.4.0:Lpノルムの作図【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.4項「正則化最…

【R】3.1.1:線形基底関数モデルの実装【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.1項「最尤推定…

3.1.1:最尤推定と最小二乗法の導出【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでのスクラッチ実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、3.1.1項の内容です…

斜線入りのヒートマップの作成

はじめに ヒートマップの任意の場所に斜線を描画します。Matplotlibライブラリを利用したヒートマップの作図については「pcolorによるヒートマップの作成 - からっぽのしょこ」を参照してください。 斜線入りのヒートマップの作成 matplotlibライブラリのAxe…

pcolorによるヒートマップの作成

はじめに Matplotlibライブラリを利用してヒートマップを作図します。 pcolorによるヒートマップの作成 matplotlibライブラリのAxes.pcolor()を用いて、ヒートマップを作図します。 利用するライブラリを読み込みます。 # 利用するモジュール import matplot…

Affineレイヤの逆伝播の可視化【ゼロつく1のノート(数学)】

はじめに 「機械学習・深層学習」初学者のための『ゼロから作るDeep Learning』の攻略ノートです。『ゼロつくシリーズ』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 ニューラルネットワーク内部の計算について、数学的背景の…

Affineレイヤの順伝播の可視化【ゼロつく1のノート(数学)】

はじめに 「機械学習・深層学習」初学者のための『ゼロから作るDeep Learning』の攻略ノートです。『ゼロつくシリーズ』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 ニューラルネットワーク内部の計算について、数学的背景の…

5.5.2:Sigmoidレイヤの実装【ゼロつく1のノート(実装)】

はじめに 「プログラミング」初学者のための『ゼロから作るDeep Learning』攻略ノートです。『ゼロつくシリーズ』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 関数やクラスとして実装される処理の塊を細かく分解して、1つず…

交差エントロピー誤差の逆伝播の導出【ゼロつく1のノート(数学)】

はじめに 「機械学習・深層学習」初学者のための『ゼロから作るDeep Learning』の攻略ノートです。『ゼロつくシリーズ』学習の補助となるように適宜解説を加えています。本と一緒に読んでください。 ニューラルネットワーク内部の計算について、数学的背景の…

Softmax関数の微分

はじめに 「ソフトマックス関数の逆伝播の導出【ゼロつく1のノート(数学)】 - からっぽのしょこ」の補足用の記事です。内容は重複しており、またこの記事で完結しています。おそらくこの記事の方が分かりやすいです。 Softmax関数の微分 Softmax関数(ソフト…