からっぽのしょこ

読んだら書く!書いたら読む!同じ事は二度調べ(たく)ない

機械学習

特にトピックモデルのためのベイズ推論を中心とした機械学習関連の記事です。

【Python】9.3.3:混合ベルヌーイ分布のEMアルゴリズム【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.3.3項の内容です。混合ベル…

ステップ47:多値分類の出力層の計算【ゼロつく3のノート(数学)】

はじめに 『ゼロから作るDeep Learning 3』の初学者向け攻略ノートです。『ゼロつく3』の学習の補助となるように適宜解説を加えていきます。本と一緒に読んでください。 本で登場する数学的な内容をもう少し深堀りして解説していきます。 この記事は、主にス…

ステップ46:SGD以外の最適化手法【ゼロつく3のノート(メモ)】

はじめに 『ゼロから作るDeep Learning 3』の初学者向け攻略ノートです。『ゼロつく3』の学習の補助となるように適宜解説を加えていきます。本と一緒に読んでください。 本だけで十分だけど背景などが気になるところをもう少し深堀りして解説していきます。 …

ステップ42:線形回帰の実装【ゼロつく3のノート(実装)】

はじめに 『ゼロから作るDeep Learning 3』の初学者向け攻略ノートです。『ゼロつく3』の学習の補助となるように適宜解説を加えていきます。本と一緒に読んでください。 本で省略されているクラスや関数の内部の処理を1つずつ解説していきます。 この記事は…

ステップ42:平均2乗誤差の逆伝播の導出【ゼロつく3のノート(数学)】

はじめに 『ゼロから作るDeep Learning 3』の初学者向け攻略ノートです。『ゼロつく3』の学習の補助となるように適宜解説を加えていきます。本と一緒に読んでください。 本で登場する数学的な内容をもう少し深堀りして解説していきます。 この記事は、主に42…

ステップ29:勾配降下法とニュートン法の比較【ゼロつく3のノート(数学)】

はじめに 『ゼロから作るDeep Learning 3』の初学者向け攻略ノートです。『ゼロつく3』の学習の補助となるように適宜解説を加えていきます。本と一緒に読んでください。 本で登場する数学的な内容をもう少し深堀りして解説していきます。 この記事は、主にス…

【Python】10.1.3:一変数ガウス分布の変分推論【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

【R】10.1.3:一変数ガウス分布の変分推論【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

10.1.3:一変数ガウス分布の変分推論【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、10.1.3項の内容です。平均と精…

9.3.3:混合ベルヌーイ分布のEMアルゴリズム【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.3.3項の内容です。混合ベル…

9.3.1:混合ガウス分布のEMアルゴリズム:その2【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.3.1項の内容です。多次元混…

【Python】9.2.2:混合ガウス分布のEMアルゴリズム【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.2.2項の内容です。多次元混…

【R】9.2.2:混合ガウス分布のEMアルゴリズム【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.2.2項の内容です。多次元混…

9.2:混合ガウス分布のEMアルゴリズム:その1【PRMLのノート】

はじめに 『パターン認識と機械学習』の独学時のまとめです。一連の記事は「数式の行間埋め」または「R・Pythonでの実装」からアルゴリズムの理解を補助することを目的としています。本とあわせて読んでください。 この記事は、9.2節の内容です。多次元混合…

【Python】4.4.4:ガウス混合モデルにおける推論:崩壊型ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.4.4項の内容です。「観測モ…

【R】4.4.4:ガウス混合モデルにおける推論:崩壊型ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.4.4項の内容です。「観測モ…

【Python】4.3.4:ポアソン混合モデルにおける推論:崩壊型ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.4項の内容です。「観測モ…

【R】4.3.4:ポアソン混合モデルにおける推論:崩壊型ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.4項の内容です。「観測モ…

【Python】4.3.3:ポアソン混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.3項の内容です。「観測モ…

【R】4.3.3:ポアソン混合モデルにおける推論:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.3項の内容です。「観測モ…

【Python】4.3.2:ポアソン混合モデルにおける推論:ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.2項の内容です。「観測モ…

【R】4.3.2:ポアソン混合モデルにおける推論:ギブスサンプリング【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.3.2項の内容です。「観測モ…

4.2.2:変分推論【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、4.2.2項の内容です。混合モデ…

【Python】3.4.3:多次元ガウス分布の学習と予測:平均・精度が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.4.3項の内容です。「尤度関…

【R】3.4.3:多次元ガウス分布の学習と予測:平均・精度が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.4.3項の内容です。「尤度関…

【Python】3.4.2:多次元ガウス分布の学習と予測:精度が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.4.2項の内容です。「尤度関…

【R】3.4.2:多次元ガウス分布の学習と予測:精度が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、項の内容です。「尤度関数を精…

【Python】3.4.1:多次元ガウス分布の学習と予測:平均が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.4.1項の内容です。「尤度関…

【R】3.4.1:多次元ガウス分布の学習と予測:平均が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、項の内容です。「尤度関数を平…

【Python】3.3.3:1次元ガウス分布の学習と予測:平均・精度が未知の場合【緑ベイズ入門のノート】

はじめに 『ベイズ推論による機械学習入門』の学習時のノートです。基本的な内容は「数式の行間を読んでみた」とそれを「RとPythonで組んでみた」になります。「数式」と「プログラム」から理解するのが目標です。 この記事は、3.3.3項の内容です。「尤度関…